

 1

Guidelines for Software Development

Application development

Types of application development

These guidelines are applicable to both traditional application development activities as well as mobile application
development activities.

Development environments

Segregating development, testing and production environments can limit the spread of malicious code and minimises
the likelihood of faulty code in a production environment.

Security Control: 0400; Revision: 5; Updated: Aug-20; Applicability: All
Development, testing and production environments are segregated.

Security Control: 1419; Revision: 1; Updated: Sep-18; Applicability: All
Development and modification of software only takes place in development environments.

Security Control: 1420; Revision: 3; Updated: Jun-21; Applicability: All
Data in production environments is not used in testing or development environments unless the testing or development
environments are secured to the same level as the production environments.

Security Control: 1422; Revision: 3; Updated: Sep-18; Applicability: All
Unauthorised access to the authoritative source for software is prevented.

Secure software design

Threat modelling is an important part of secure software design as it assists with the identification of at risk software
components, thereby enabling mitigating security controls to be identified to reduce security risks.

Security Control: 1238; Revision: 3; Updated: Sep-18; Applicability: All
Threat modelling and other secure design techniques are used to ensure that threats to software and mitigations to
those threats are identified and accounted for.

Software bill of materials

A software bill of materials is a list of open source and commercial software components that are used in the
development of software. This can assist in providing greater cyber supply chain transparency for consumers of the

Information Security
Manual
DECEMBER 2021

 2

software by allowing for easier identification and management of security risks associated with individual software
components used by software.

Security Control: 1730; Revision: 0; Updated: Dec-21; Applicability: All
A software bill of materials is produced and made available to consumers of software.

Secure programming practices

Once a secure software design has been identified, secure programming practices should be followed during software
development activities.

Security Control: 0401; Revision: 4; Updated: Oct-19; Applicability: All
Platform-specific secure programming practices are used when developing software, including using the lowest privilege
needed to achieve a task, checking return values of all system calls, validating all inputs and encrypting all
communications.

Software testing

Software testing can lessen the risk of security vulnerabilities in software being introduced into a production
environment. Software testing can be performed using both static testing, such as code analysis, as well as dynamic
testing, such as input validation and fuzzing. Vulnerability scanning tools can also assist in the detection of known
security vulnerabilities, such as out of date or vulnerable dependencies. Using an independent party for software
testing will remove any bias that can occur when a software developer tests their own software.

Security Control: 0402; Revision: 3; Updated: Sep-18; Applicability: All
Software is tested for security vulnerabilities by software developers, as well as an independent party, before it is used in
a production environment.

Vulnerability disclosure program

Implementing a vulnerability disclosure program, based on responsible disclosure, can assist organisations, vendors and
service providers to improve the security of their products and services as it provides a way for security researchers,
customers and members of the public to responsibly notify them of potential security vulnerabilities in a coordinated
manner. Furthermore, following the verification and resolution of a reported security vulnerability, it can assist
organisations, vendors and service providers in notifying their customers of any security vulnerabilities that have been
discovered in their products and services and any recommended security patches, updates or mitigations.

A vulnerability disclosure program should include processes and procedures for receiving, verifying, resolving and
reporting on security vulnerabilities disclosed by both internal and external sources. In support of this, a vulnerability
disclosure policy should be made publicly available that covers:

 the purpose of the vulnerability disclosure program

 the types of security research that are allowed

 the types of security research that are not allowed

 how to report potential security vulnerabilities

 the actions that will be taken on receiving notification of potential security vulnerabilities and indicative
timeframes for these actions

 any expectations regarding the public disclosure of verified security vulnerabilities

 any recognition finders of verified security vulnerabilities will receive.

Finally, the Australian Cyber Security Centre (ACSC) encourages security researchers, customers and members of the
public to responsibility report security vulnerabilities directly with organisations, vendors and service providers.

 3

However, the ACSC recognises that this is not always practical, initial attempts at communication may be unsuccessful
or the person making the report may not wish to do so directly. In such cases, security vulnerabilities can be reported to
the ACSC as an independent coordinator.

Security Control: 1616; Revision: 0; Updated: Aug-20; Applicability: All
A vulnerability disclosure program is implemented to assist with the secure development and maintenance of products
and services.

Security Control: 1717; Revision: 0; Updated: Dec-21; Applicability: All
A ‘security.txt’ file is hosted for all internet-facing organisational domains to assist in the responsible disclosure of
security vulnerabilities in organisations’ products and services.

Further information

Further information on a secure development life cycle model, known as The Trustworthy Computing Security
Development Lifecycle, is available from Microsoft.

Further information on cyber supply chain transparency and the recommended content for a software bill of materials
is available in the United States’ National Telecommunications and Information Administration’s The Minimum
Elements For a Software Bill of Materials (SBOM) .

Further information on secure programming practices is available from the Carnegie Mellon University’s Software
Engineering Institute.

Further information on implementing a vulnerability disclosure program can be found in:

 Google’s Starting a Vulnerability Disclosure Program

 European Union Agency for Cybersecurity’s Good Practice Guide on Vulnerability Disclosure

 Netherland’s National Cyber Security Centre’s Coordinated Vulnerability Disclosure: The Guideline

 Carnegie Mellon University’s The CERT Guide to Coordinated Vulnerability Disclosure

 International Organization for Standardization/International Electrotechnical Commission 29147:2018,
Information technology – Security techniques – Vulnerability disclosure

 International Organization for Standardization/International Electrotechnical Commission 30111:2019,
Information technology – Security techniques – Vulnerability handling processes.

Further information on recommended contents for ‘security.txt’ files is available to assist organisations with their
implementation.

Further information on reporting security vulnerabilities to the ACSC as an independent coordinator is available from
the ACSC.

Web application development

Protecting web applications

Even when a web application only contains public data, there remains a need to protect the integrity and availability of
the data processed by the web application and the system it is hosted on.

Web application frameworks

Web application frameworks can be leveraged by software developers to enhance the security of a web application
while decreasing development time. These resources can assist software developers to securely implement complex
components such as session management, input handling and cryptographic operations.

https://docs.microsoft.com/en-au/previous-versions/ms995349(v=msdn.10)
https://docs.microsoft.com/en-au/previous-versions/ms995349(v=msdn.10)
https://www.ntia.gov/SBOM
https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom
https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom
https://www.sei.cmu.edu/research-capabilities/all-work/display.cfm?customel_datapageid_4050=21274
https://developers.google.com/android/play-protect/starting-a-vdp
https://www.enisa.europa.eu/publications/vulnerability-disclosure
https://english.ncsc.nl/publications/publications/2019/juni/01/coordinated-vulnerability-disclosure-the-guideline
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=503330
https://www.iso.org/standard/72311.html
https://www.iso.org/standard/69725.html
https://securitytxt.org/
https://www.cyber.gov.au/acsc/report

 4

Security Control: 1239; Revision: 3; Updated: Sep-18; Applicability: All
Robust web application frameworks are used to aid in the development of secure web applications.

Web application interactions

Hypertext Transfer Protocol Secure (HTTPS) is Hypertext Transfer Protocol using Transport Layer Security (TLS)
encryption. The use of HTTPS for web applications ensures that not only are individuals’ interactions with web
applications kept confidential, but the integrity of their interactions are also maintained.

Security Control: 1552; Revision: 0; Updated: Oct-19; Applicability: All
All web application content is offered exclusively using HTTPS.

Web application input handling

Most web application security vulnerabilities are caused by the lack of secure input handling. It is essential that web
applications do not trust any input such as the website address and its parameters, Hypertext Markup Language (HTML)
form data, cookie values and request headers without validating or sanitising it. Examples of validation and sanitisation
include:

 ensuring a telephone form field contains only numerals

 ensuring data used in a Structured Query Language query is sanitised properly

 ensuring Unicode input is handled appropriately.

Security Control: 1240; Revision: 2; Updated: Sep-18; Applicability: All
Validation and/or sanitisation is performed on all input handled by a web application.

Web application output encoding

The likelihood of cross-site scripting and other content injection attacks can be reduced through the use of contextual
output encoding. The most common example of output encoding is the use of HTML entities. Performing HTML entity
encoding causes potentially dangerous HTML characters such as ‘<’, ‘>’ and ‘&’ to be converted into their encoded
equivalents ‘<’, ‘>’ and ‘&’.

Output encoding is particularly useful where external data sources, which may not be subject to the same level of input
filtering, are output to users.

Security Control: 1241; Revision: 3; Updated: Sep-18; Applicability: All
Output encoding is performed on all output produced by a web application.

Web browser-based security controls

Web browser-based security controls such as Content-Security-Policy, Hypertext Transfer Protocol Strict Transport
Security (HSTS) and X-Frame-Options can be leveraged by web applications to help protect themselves and their users.
This is achieved via the use of security policy in response headers which users’ web browsers apply according to the
defined security policy. Since the security controls are applied via response headers, it makes it possible to apply the
security controls to legacy or proprietary web applications where changes to the source code are impractical.

Security Control: 1424; Revision: 3; Updated: Oct-19; Applicability: All
Web applications implement Content-Security-Policy, HSTS and X-Frame-Options response headers.

Open Web Application Security Project

The Open Web Application Security Project (OWASP) provides a comprehensive resource to consult when developing
web applications.

 5

Security Control: 0971; Revision: 7; Updated: Apr-19; Applicability: All
The OWASP Application Security Verification Standard is followed when developing web applications.

Further information

Further information on auditing of web applications can be found in the event logging and auditing section of the
Guidelines for System Monitoring.

Further information on implementing TLS can be found in the Transport Layer Security section of the Guidelines for
Cryptography.

Further information on web application security can be found in the following ACSC publications:

 Implementing Certificates, TLS, HTTPS and Opportunistic TLS

 Protecting Web Applications and Users

 Securing Content Management Systems.

Further information on web application security is available in the OWASP Application Security Verification Standard.

https://www.cyber.gov.au/acsc/view-all-content/advice/guidelines-system-monitoring
https://www.cyber.gov.au/acsc/view-all-content/advice/guidelines-cryptography
https://www.cyber.gov.au/acsc/view-all-content/advice/guidelines-cryptography
https://www.cyber.gov.au/acsc/view-all-content/publications/implementing-certificates-tls-https-and-opportunistic-tls
https://www.cyber.gov.au/acsc/view-all-content/publications/protecting-web-applications-and-users
https://www.cyber.gov.au/acsc/view-all-content/publications/securing-content-management-systems
https://wiki.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project

	Guidelines for Software Development
	Application development
	Types of application development
	Development environments
	Secure software design
	Software bill of materials
	Secure programming practices
	Software testing
	Vulnerability disclosure program
	Further information

	Web application development
	Protecting web applications
	Web application frameworks
	Web application interactions
	Web application input handling
	Web application output encoding
	Web browser-based security controls
	Open Web Application Security Project
	Further information

