

Australian Government

Information security manual

Last updated:

June 2025

Guidelines for networking

Network design and configuration

Network documentation

It is important that network documentation is developed and accurately depicts the current state of networks, as this can assist in troubleshooting network problems as well as responding to and recovering from cybersecurity incidents. As such, network documentation should include high-level network diagrams showing all connections into networks; logical network diagrams showing all critical servers, high-value servers, network devices and network security appliances; and device settings for all critical servers, high-value servers, network devices and network security appliances. Finally, as network documentation could be used by malicious actors to assist in compromising networks, it is important that it is appropriately protected.

Control: ISM-0518; Revision: 6; Updated: Dec-23; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Network documentation is developed, implemented and maintained.

Control: ISM-0516; Revision: 5; Updated: Mar-22; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Network documentation includes high-level network diagrams showing all connections into networks and logical network diagrams showing all critical servers, high-value servers, network devices and network security appliances.

Control: ISM-1912; Revision: 0; Updated: Dec-23; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Network documentation includes device settings for all critical servers, high-value servers, network devices and network security appliances.

Control: ISM-1178; Revision: 3; Updated: Sep-18; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Network documentation provided to a third party, or published in public tender documentation, only contains details necessary for other parties to undertake contractual services.

Network segmentation and segregation

Network segmentation and segregation is one of the most effective controls in preventing malicious actors from easily propagating throughout networks once initial access has been gained. To achieve this, networks can be segregated into multiple network zones in order to protect servers, services and data. For example, administrative infrastructure used for managing critical servers, high-value servers and regular servers should be segregated from each other. In addition, all administrative infrastructure should be segregated from other assets on networks.

Control: ISM-1181; Revision: 5; Updated: Mar-22; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Networks are segregated into multiple network zones according to the criticality of servers, services and data.

Control: ISM-1577; Revision: 1; Updated: Mar-22; Applicability: NC, OS, P, S, TS; Essential Eight: N/A An organisation's networks are segregated from their service providers' networks.

Using Virtual Local Area Networks

Virtual Local Area Networks (VLANs) can be used to implement network segmentation and segregation as long as networks belong to the same security domain. In such cases, if a data spill occurs the impact will be less than if a data spill occurred between two networks of different classifications or between an organisation's network and public network infrastructure. Should an organisation choose to risk manage implementing VLANs between networks belonging to different security domains, such as at the same classification, additional controls for network devices will apply, such as not sharing VLAN trunks and terminating VLANs on separate physical network interfaces.

For the purposes of this topic, Multiprotocol Label Switching is considered to be equivalent to VLANs and is subject to the same controls.

Control: ISM-1532; Revision: 3; Updated: Mar-22; Applicability: NC, OS, P, S, TS; Essential Eight: N/A VLANs are not used to separate network traffic between an organisation's networks and public network infrastructure.

Control: ISM-0529; Revision: 6; Updated: Dec-21; Applicability: NC, OS, P, S, TS; Essential Eight: N/A VLANs are not used to separate network traffic between networks belonging to different security domains.

Control: ISM-0530; Revision: 6; Updated: Dec-21; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Network devices managing VLANs are administered from the most trusted security domain.

Control: ISM-0535; Revision: 6; Updated: Dec-21; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Network devices managing VLANs belonging to different security domains do not share VLAN trunks.

Control: ISM-1364; Revision: 3; Updated: Dec-21; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Network devices managing VLANs terminate VLANs belonging to different security domains on separate physical network interfaces.

Functional separation between networked devices and the internet

Implementing functional separation between networked devices and the internet reduces the exposure of such devices to attacks originating from the internet.

Control: ISM-2068; Revision: 0; Updated: Jun-25; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Internet connectivity for networked devices is strictly limited to those that require access.

Networked management interfaces

To assist in reducing the attack surface of networks, IT equipment residing on networks (such as servers) or constituting the makeup of network infrastructure (such as network devices) should not directly expose their networked management interfaces to the internet. In situations where this is not possible, such as for some cloud services and web applications, additional compensating controls will need to be implemented in order to protect weak or vulnerable networked management interfaces from being exploited by malicious actors to remotely compromise networks. Ideally, IT equipment on networks, or constituting the makeup of network infrastructure, should be managed via administrative infrastructure segregated from the wider network and the internet.

Control: ISM-1863; Revision: 1; Updated: Jun-24; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Networked management interfaces for IT equipment are not directly exposed to the internet.

Functional separation between servers

Implementing functional separation between servers reduces the likelihood that a server compromised by malicious actors will pose an increased security risk to other servers.

Control: ISM-0385; Revision: 6; Updated: Sep-18; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Servers maintain effective functional separation with other servers allowing them to operate independently.

Control: ISM-1479; Revision: 1; Updated: Jun-24; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Servers minimise communications with other servers at the network and file system level.

Network encryption

While physical security can provide a degree of protection against unauthorised physical access to network infrastructure, unauthorised access to unencrypted data can still be gained via other means, such as compromised network devices. For this reason, it is important that all data communicated over network infrastructure is encrypted, even within appropriately secure areas. Note, however, some protocols do not have encrypted equivalents. In such situations, where practical and feasible, an organisation should consider transitioning to the use of alternative protocols that support encryption.

Control: ISM-1781; Revision: 0; Updated: Jun-22; Applicability: NC, OS, P, S, TS; Essential Eight: N/A All data communicated over network infrastructure is encrypted.

Using Internet Protocol version 6

The use of Internet Protocol version 6 (IPv6) can introduce additional security risks to networks. As such, an organisation exclusively using Internet Protocol version 4 (IPv4) should disable IPv6. This will assist in minimising the attack surface of networks and ensure that IPv6 cannot be exploited by malicious actors.

To aid in the transition from IPv4 to IPv6, numerous tunnelling protocols have been developed to allow interoperability between IPv4 and IPv6. Disabling IPv6 tunnelling protocols on networks that do not require such functionality will prevent malicious actors from bypassing traditional network defences by encapsulating IPv6 data inside IPv4 packets.

Stateless Address Autoconfiguration is a method of stateless Internet Protocol (IP) address configuration in IPv6 networks. Notably, it reduces the ability of an organisation to maintain effective logs of IP address assignments on networks. For this reason, stateless IP addressing should be avoided.

Control: ISM-0521; Revision: 6; Updated: Mar-22; Applicability: NC, OS, P, S, TS; Essential Eight: N/A IPv6 functionality is disabled in dual-stack network devices unless it is being used.

Control: ISM-1186; Revision: 4; Updated: Mar-22; Applicability: NC, OS, P, S, TS; Essential Eight: N/A IPv6 capable network security appliances are used on IPv6 and dual-stack networks.

Control: ISM-1428; Revision: 2; Updated: Mar-22; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Unless explicitly required, IPv6 tunnelling is disabled on all network devices.

Control: ISM-1429; Revision: 3; Updated: Mar-22; Applicability: NC, OS, P, S, TS; Essential Eight: N/A IPv6 tunnelling is blocked by network security appliances at externally-connected network boundaries.

Control: ISM-1430; Revision: 3; Updated: Mar-22; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Dynamically assigned IPv6 addresses are configured with Dynamic Host Configuration Protocol version 6 in a stateful manner with lease data stored in a centralised event logging facility.

Network access controls

If malicious actors have reduced opportunities to physically connect unauthorised network devices, or networked information technology (IT) equipment, to networks, they also have reduced opportunities to compromise such networks. Network access controls can not only prevent unauthorised physical access to networks, but also prevent personnel from carelessly bridging networks by connecting one network to another network. Furthermore, network access controls can also be useful for limiting the flow of network traffic between network segments.

Control: ISM-0520; Revision: 9; Updated: Dec-24; Applicability: NC, OS, P, S, TS; Essential Eight: N/A

Network access controls are implemented on networks to prevent the connection of unauthorised network devices and networked IT equipment.

Control: ISM-1182; Revision: 5; Updated: Sep-23; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Network access controls are implemented to limit the flow of network traffic within and between network segments to only that required for business purposes.

Network management traffic

Implementing security measures specifically for network management traffic provides another layer of defence should malicious actors find an opportunity to connect to networks. In addition, this also makes it more difficult for malicious actors to enumerate networks.

Control: ISM-1006; Revision: 6; Updated: Sep-18; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Security measures are implemented to prevent unauthorised access to network management traffic.

Using the Server Message Block protocol

The Server Message Block (SMB) protocol is used to share files and printers across networks. Unfortunately, a number of weaknesses exist in SMB version 1 that can be used by malicious actors to gain access to resources on networks, including Microsoft Active Directory Domain Services domain controllers.

Control: ISM-1962; Revision: 0; Updated: Sep-24; Applicability: NC, OS, P, S, TS; Essential Eight: N/A SMB version 1 is not used on networks.

Using the Simple Network Management Protocol

The Simple Network Management Protocol (SNMP) can be used to monitor the status of network devices. The first two iterations of SNMP were inherently insecure as they used trivial authentication methods. Furthermore, changing all default SNMP community strings on network devices, and limiting their access to read-only, is strongly encouraged.

Control: ISM-1311; Revision: 3; Updated: Dec-22; Applicability: NC, OS, P, S, TS; Essential Eight: N/A SNMP version 1 and SNMP version 2 are not used on networks.

Control: ISM-1312; Revision: 3; Updated: Mar-22; Applicability: NC, OS, P, S, TS; Essential Eight: N/A All default SNMP community strings on network devices are changed and write access is disabled.

Using Network-based Intrusion Detection and Prevention Systems

A Network-based Intrusion Detection System (NIDS) or Network-based Intrusion Prevention System (NIPS) can be an effective way of identifying and responding to network intrusions. In addition, generating event logs and alerts for network traffic that contravenes any rule in a firewall ruleset can help identify suspicious or malicious network traffic entering networks due to a failure of, or configuration change to, firewalls.

Control: ISM-1028; Revision: 8; Updated: Mar-22; Applicability: NC, OS, P, S, TS; Essential Eight: N/A A NIDS or NIPS is deployed in gateways between an organisation's networks and other networks they do not manage.

Control: ISM-1030; Revision: 8; Updated: Mar-22; Applicability: NC, OS, P, S, TS; Essential Eight: N/A A NIDS or NIPS is located immediately inside the outermost firewall for gateways and configured to generate event logs and alerts for network traffic that contravenes any rule in a firewall ruleset.

Blocking anonymity network traffic

Inbound network connections from anonymity networks, such as the Tor network, can be used by malicious actors for reconnaissance and malicious code delivery purposes with minimal risk of detection and attribution. As such, this network traffic should be blocked. However, an organisation might choose to support anonymous connections to their websites to cater for individuals who want to remain anonymous for privacy reasons. In such cases, it is suggested that network traffic from anonymity networks be logged and monitored instead. Additionally, outbound network connections to anonymity networks can be used by malicious code for command and control or data exfiltration purposes and should be blocked.

Control: ISM-1627; Revision: 1; Updated: Sep-23; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Inbound network connections from anonymity networks are blocked.

Control: ISM-1628; Revision: 0; Updated: Nov-20; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Outbound network connections to anonymity networks are blocked.

Encrypted Domain Name System Services

Domain Name System (DNS) is a hierarchical naming system built on a distributed database for resources connected to the internet. In performing this service, DNS maps human-readable domain names to their associated IP addresses. Unfortunately, malicious actors can surveil standard DNS requests for the purpose of intelligence gathering. As such, it is important that DNS traffic is encrypted by clients and servers wherever supported, such as via DNS over Hypertext Transfer Protocol Secure or DNS over Transport Layer Security.

Control: ISM-2017; Revision: 0; Updated: Mar-25; Applicability: NC, OS, P, S, TS; Essential Eight: N/A DNS traffic is encrypted by clients and servers wherever supported.

Protective Domain Name System Services

A protective DNS service can be an effective way of blocking requests made by an organisation's users, or malicious actors on an organisation's network, to known malicious domain names – either as part of an initial compromise or subsequent command and control activities. DNS event logs captured by a protective DNS service can also be useful for investigating any exploitation attempt or successful compromise of a network by malicious actors.

In selecting a protective DNS service, many commercial offerings exist. In addition, the Australian Signals Directorate (ASD) offers a free protective DNS service for Australia's most critical systems.

Control: ISM-1782; Revision: 1; Updated: Dec-22; Applicability: NC, OS, P, S, TS; Essential Eight: N/A A protective DNS service is used to block access to known malicious domain names.

Flashing network devices with trusted firmware before first use

Flashing network devices with trusted firmware, obtained from vendors via trusted means, before network devices are used for the first time can assist in reducing cyber supply chain risks, such as the introduction of malicious firmware resulting from a cyber supply chain interdiction attack or a compromised vendor development environment or source code repository.

Control: ISM-1800; Revision: 0; Updated: Sep-22; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Network devices are flashed with trusted firmware before they are used for the first time.

Default user accounts and credentials for network devices

Network devices can come pre-configured with default user accounts and credentials. For example, wireless access points with a user account named 'admin' and a password of 'admin'. Ensuring default user accounts or credentials are changed, disabled or removed during initial setup can assist in reducing the likelihood of network devices being exploited by malicious actors.

Control: ISM-1304; Revision: 7; Updated: Jun-25; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Default user accounts or credentials for network devices, including for any pre-configured user accounts, are changed, disabled or removed during initial setup.

Disabling unused physical ports on network devices

Disabling unused physical ports on network devices reduces the opportunity for malicious actors to connect to networks if they can gain physical access to network devices.

Control: ISM-0534; Revision: 2; Updated: Sep-18; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Unused physical ports on network devices are disabled.

Regularly restarting network devices

Implementing measures to restart network devices on at least a monthly basis can assist in maintaining network device performance as well as removing malicious actors that may have compromised a network device but failed to gain persistence.

Control: ISM-1801; Revision: 0; Updated: Sep-22; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Network devices are restarted on at least a monthly basis.

Network device event logging

Centrally logging and analysing security-relevant events, including configuration changes, for network devices, especially internet-facing network devices, can assist in monitoring the security posture of systems, detecting malicious behaviour and contributing to investigations following cybersecurity incidents.

Control: ISM-1963; Revision: 0; Updated: Sep-24; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Security-relevant events for internet-facing network devices are centrally logged.

Control: ISM-1964; Revision: 0; Updated: Sep-24; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Security-relevant events for non-internet-facing network devices are centrally logged.

Further information

Further information on secure network design can be found in ASD's *Foundations for modern defensible architecture* publication.

Further information on wireless networks can be found in the wireless networks section of these guidelines.

Further information on gateways can be found in the gateways section of the *Guidelines for gateways*.

Further information on encrypting communications can be found in the cryptographic fundamentals section of the *Guidelines for cryptography*.

Further information on network segmentation and segregation can be found in ASD's <u>Implementing network</u> <u>segmentation and segregation</u> publication.

Further information on network security zones can be found in Canada's Canadian Centre for Cyber Security's <u>Baseline</u> <u>security requirements for network security zones (version 2.0)</u> publication.

Further information on implementing network segmentation and segregation for system administration purposes can be found in the system administration section of the <u>Guidelines for system management</u>.

Further information on functional separation of servers using virtualisation can be found in the virtualisation hardening section of the <u>Guidelines for system hardening</u>.

Further information on blocking anonymity network traffic can be found in ASD's <u>Defending against the malicious use</u> <u>of the Tor network</u> publication.

Further information on DNS services can be found in ASD's <u>Domain Name System security for domain owners</u> and <u>Domain Name System security for domain resolvers</u> publications.

Further information on implementing encrypted DNS can be can be found in the United States' National Security Agency's <u>Adopting Encrypted DNS in Enterprise Environments</u> publication and the Cybersecurity & Infrastructure Security Agency's <u>Encrypted DNS Implementation Guidance</u> publication.

Further information on selecting a protective DNS service can be found in the United States' National Security Agency and Cybersecurity & Infrastructure Security Agency's <u>Selecting a Protective DNS Service</u> publication.

Further information on cyber supply chain risk management can be found in the cyber supply chain risk management section of the <u>Guidelines for procurement and outsourcing</u>.

Further information on network device hardening, particularly for edge devices, can be found in the following publications:

- ASD's <u>Mitigation strategies for edge devices: Executive guidance</u>
- ASD's <u>Mitigation strategies for edge devices: Practitioner guidance</u>
- Canada's Canadian Centre for Cyber Security's <u>Security considerations for edge devices</u>
- United Kingdom's National Cyber Security Centre's <u>Guidance on digital forensics and protective monitoring</u> specifications for producers of network devices and appliances.

Further information on network device hardening can also be found in the United States' National Security Agency's <u>Network Infrastructure Security Guide</u> publication.

Further information on event logging can be found in the event logging and monitoring section of the <u>Guidelines for</u> <u>system monitoring</u>.

Further information on event logging for network devices can also be found in ASD's <u>Priority logs for SIEM ingestion</u>: <u>Practitioner guidance</u> publication.

Wireless networks

Wireless networks

This section describes the controls applicable to wireless networks and extends upon the prior network design and configuration section.

Choosing wireless devices

Using wireless devices, such as wireless access points, wireless adapters and wireless network cards, which have been certified against a Wi-Fi Alliance certification program, provides an organisation with the assurance that they conform to wireless standards and are guaranteed to be interoperable with other wireless devices on wireless networks.

Control: ISM-1314; Revision: 2; Updated: Sep-21; Applicability: NC, OS, P, S, TS; Essential Eight: N/A All wireless devices are Wi-Fi Alliance certified.

Public wireless networks

When an organisation provides a public wireless network for general public use, connecting the public wireless network to, or sharing infrastructure with, any other organisation networks can create an entry point for malicious actors allowing them to target organisation networks in order to steal data or disrupt services.

Control: ISM-0536; Revision: 7; Updated: Mar-22; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Public wireless networks provided for general public use are segregated from all other organisation networks.

Administrative interfaces for wireless access points

Administrative interfaces allow users to modify the configuration and security settings of wireless access points. Often, by default, wireless access points allow users to access administrative interfaces over fixed network connections or wireless network connections. To assist in reducing the attack surface for wireless access points, the administrative interface should be disabled for wireless network connections.

Control: ISM-1315; Revision: 2; Updated: Sep-18; Applicability: NC, OS, P, S, TS; Essential Eight: N/A

The administrative interface on wireless access points is disabled for wireless network connections.

Default settings

Some wireless access points come pre-configured with weak default settings. As such, it is important to harden the settings of wireless access points prior to their deployment in networks. In addition, some wireless access points come with default Service Set Identifiers (SSIDs). As default SSIDs are often documented on the internet, it is important to change default SSIDs of wireless access points.

When changing default SSIDs, it is important that new SSIDs do not bring undue attention to an organisation's wireless networks. In doing so, SSIDs of wireless networks should not be readily associated with an organisation, the location of their premises or the functionality of wireless networks.

A method commonly recommended to lower the profile of wireless networks is disabling SSID broadcasting. While this ensures that the existence of wireless networks are not broadcast overtly using beacon frames, SSIDs are still broadcast in probe requests, probe responses, association requests and re-association requests. As such, it is easy to determine SSIDs of wireless networks by capturing these requests and responses. By disabling SSID broadcasting, an organisation will make it more difficult for users to connect to wireless networks. Furthermore, malicious actors could configure a malicious wireless access point to broadcast the same SSID as a hidden SSID used by a legitimate wireless

network, thereby fooling users or devices into automatically connecting to the malicious wireless access point instead. In doing so, malicious actors could steal authentication credentials in order to gain access to the legitimate wireless network.

Control: ISM-1710; Revision: 2; Updated: Dec-23; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Settings for wireless access points are hardened.

Control: ISM-1316; Revision: 3; Updated: Mar-22; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Default SSIDs of wireless access points are changed.

Control: ISM-1317; Revision: 3; Updated: Mar-22; Applicability: NC, OS, P, S, TS; Essential Eight: N/A SSIDs of non-public wireless networks are not readily associated with an organisation, the location of their premises or the functionality of wireless networks.

Control: ISM-1318; Revision: 3; Updated: Mar-22; Applicability: NC, OS, P, S, TS; Essential Eight: N/A SSID broadcasting is not disabled on wireless access points.

Media Access Control address filtering

Devices that connect to wireless networks generally have a unique Media Access Control (MAC) address. Using MAC address filtering can prevent rogue devices from connecting to wireless networks. However, malicious actors may be able to determine MAC addresses of legitimate devices and use this information to gain access to wireless networks. As such, MAC address filtering introduces management overhead without any tangible security benefit.

Control: ISM-1320; Revision: 2; Updated: Sep-18; Applicability: NC, OS, P, S, TS; Essential Eight: N/A MAC address filtering is not used to restrict which devices can connect to wireless networks.

Static addressing

Assigning static IP addresses for devices accessing wireless networks can prevent rogue devices connecting to wireless networks from being assigned routable IP addresses. However, malicious actors may be able to determine IP addresses of legitimate devices and use this information to gain access to wireless networks. As such, configuring devices to use static IP addresses introduces management overhead without any tangible security benefit.

Control: ISM-1319; Revision: 2; Updated: Sep-18; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Static addressing is not used for assigning IP addresses on wireless networks.

Confidentiality and integrity of wireless network traffic

As wireless networks are often capable of being accessed from outside the perimeter of secured spaces, all wireless network traffic requires suitable cryptographic protection. For this purpose, it is recommended that Wi-Fi Protected Access 3 (WPA3) be used as it provides equivalent or greater security than its predecessor Wi-Fi Protected Access 2 (WPA2). WPA3 has also prohibited the use of various outdated and insecure cipher suites.

WPA3-Enterprise supports three enterprise modes of operation: enterprise only mode, transition mode and 192-bit mode. Preference is given to WPA3-Enterprise 192-bit mode as this mode ensures no cryptographic algorithms with known weaknesses are used. However, if any other WPA3-Enterprise modes are used then Authentication and Key Management suite 00-0F-AC:1 should be disabled (if this option is available).

Control: ISM-1332; Revision: 3; Updated: Sep-21; Applicability: NC, OS, P, S, TS; Essential Eight: N/A WPA3-Enterprise 192-bit mode is used to protect the confidentiality and integrity of all wireless network traffic.

802.1X authentication

WPA3-Enterprise uses 802.1X authentication which requires the use of an Extensible Authentication Protocol (EAP). A number of EAP methods supported by WPA2 and WPA3 are available.

Extensible Authentication Protocol-Transport Layer Security (EAP-TLS) is considered one of the most secure EAP methods and is widely supported. It uses a Public Key Infrastructure to secure communications between devices and a Remote Access Dial-In User Service (RADIUS) server through the use of X.509 certificates. While EAP-TLS provides strong mutual authentication, it requires an organisation to have established a Public Key Infrastructure. This involves deploying their own certificate authority and issuing certificates, or sourcing certificates from a commercial certificate authority, for every device that accesses their wireless networks. While this introduces additional costs and management overheads, the security advantages are significant.

Control: ISM-1321; Revision: 2; Updated: Sep-21; Applicability: NC, OS, P, S, TS; Essential Eight: N/A 802.1X authentication with EAP-TLS, using X.509 certificates, is used for mutual authentication; with all other EAP methods disabled on supplicants and authentication servers.

Control: ISM-1711; Revision: 0; Updated: Sep-21; Applicability: NC, OS, P, S, TS; Essential Eight: N/A User identity confidentiality is used if available with EAP-TLS implementations.

Evaluation of 802.1X authentication implementation

The security of 802.1X authentication is dependent on four main elements and how they interact with each other. These four elements include supplicants, authenticators, wireless access points and authentication servers. To provide assurance that these elements have been implemented correctly, they should have completed an evaluation.

Control: ISM-1322; Revision: 4; Updated: Sep-21; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Evaluated supplicants, authenticators, wireless access points and authentication servers are used in wireless networks.

Generating and issuing certificates for authentication

When issuing certificates to devices in order to access wireless networks, an organisation should be aware that certificates could be stolen by malicious code. Once compromised, certificates could be used on other devices to gain unauthorised access to wireless networks. An organisation should also be aware that in only issuing certificates to devices, any actions taken by users will only be attributable to specific devices.

When issuing certificates to users in order to access wireless networks, it can be in the form of certificates that are stored on devices or certificates that are stored on smart cards. While issuing certificates on smart cards provides increased security, it comes at a higher cost. However, users are more likely to notice missing smart cards and alert their security team, who are then able to revoke their credentials, which can minimise the time malicious actors have access to wireless networks. In addition, to reduce the likelihood of stolen smart cards from being used to gain unauthorised access to wireless networks, multi-factor authentication can be implemented through the use of personal identification numbers on smart cards. This is particularly important when smart cards grant users any form of administrative access.

Control: ISM-1324; Revision: 4; Updated: Mar-22; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Certificates are generated using an evaluated certificate authority or hardware security module.

Control: ISM-1323; Revision: 4; Updated: Jun-24; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Certificates are required for devices and users accessing wireless networks.

Control: ISM-1327; Revision: 3; Updated: Jun-24; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Certificates are protected by logical and physical access controls, encryption, and user authentication.

Caching 802.1X authentication outcomes

When 802.1X authentication is used, a shared secret key known as the Pairwise Master Key (PMK) is generated upon successful authentication of devices. This PMK is then capable of being cached to assist with fast roaming between wireless access points. When devices roam away from wireless access points they have authenticated to, they will not need to perform a full re-authentication should they roam back while the cached PMK remains valid. To further assist with roaming, wireless access points can be configured to pre-authenticate devices to neighbouring wireless access points that devices might roam to. Although requiring full authentication for devices each time they roam between wireless access points is ideal, an organisation can choose to use PMK caching and pre-authentication if they have a business requirement for fast roaming. If PMK caching is used, the PMK caching period should not be set to greater than 1440 minutes (24 hours).

Control: ISM-1330; Revision: 1; Updated: Sep-18; Applicability: NC, OS, P, S, TS; Essential Eight: N/A The PMK caching period is not set to greater than 1440 minutes (24 hours).

Fast Basic Service Set Transition

The WPA3 standard specifies support for Fast Basic Service Set Transition (FT) (802.11r). FT is a feature designed to improve user mobility and combat lag introduced by the need to authenticate to each wireless access point. However, FT requires authenticators to request and send keys to other authenticators within a security domain. If any of these keys are intercepted, all security properties are lost. Therefore, it is imperative that communications are appropriately secured. As such, FT should be disabled unless it can be confirmed that authenticator-to-authenticator communications are secured by a suitable ASD-Approved Cryptographic Protocol that provides confidentiality, integrity and mutual authentication.

Control: ISM-1712; Revision: 1; Updated: Mar-22; Applicability: NC, OS, P, S, TS; Essential Eight: N/A The use of FT (802.11r) is disabled unless authenticator-to-authenticator communications are secured by an ASD-Approved Cryptographic Protocol.

Remote Authentication Dial-In User Service authentication

Separate to the 802.1X authentication process is the RADIUS authentication process that occurs between authenticators and a RADIUS server. RADIUS is what is known as an authentication, authorisation and accounting protocol, and is intended to mediate network access. However, RADIUS is not secure enough to be used without protection. To protect credentials communicated between authenticators and a RADIUS server, communications should be encapsulated with an additional layer of encryption, such as RADIUS over Internet Protocol Security or RADIUS over Transport Layer Security.

Control: ISM-1454; Revision: 2; Updated: Sep-21; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Communications between authenticators and a RADIUS server are encapsulated with an additional layer of encryption using RADIUS over Internet Protocol Security or RADIUS over Transport Layer Security.

Interference between wireless networks

When wireless networks are deployed in close proximity, there is the potential for interference to impact their availability, especially when operating on commonly used 802.11b/g (2.4 GHz) default channels of 1 and 11. Sufficiently separating wireless networks through the use of frequency separation can help reduce this security risk. This can be achieved by using wireless networks that are configured to operate on channels that minimise overlapping frequencies, such as using 802.11b/g (2.4 GHz) channels and 802.11n (5 GHz) channels. It is important to note though, if implementing a mix of 2.4 GHz and 5 GHz channels, not all devices may be compatible with 802.11n and able to connect to 5 GHz channels.

Control: ISM-1334; Revision: 2; Updated: Sep-18; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Wireless networks implement sufficient frequency separation from other wireless networks.

Protecting management frames on wireless networks

An effective denial-of-service attack can be performed by exploiting unprotected management frames using inexpensive commercial hardware. The 802.11 standard provides no protection for management frames and therefore does not protect against spoofing or denial-of-service attacks. However, the 802.11w amendment specifically addresses the protection of management frames on wireless networks and should be enabled for WPA2. Note, in WPA3 this feature is built into the standard.

Control: ISM-1335; Revision: 1; Updated: Sep-18; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Wireless access points enable the use of the 802.11w amendment to protect management frames.

Wireless network footprint

Instead of deploying a small number of wireless access points that broadcast on high power, a greater number of wireless access points that use less broadcast power can be deployed to achieve the desired footprint for wireless networks. This has the benefit of providing service continuity should wireless access points become unserviceable. In such cases, the output power of nearby wireless access points can be increased to cover the footprint gap until the unserviceable wireless access points can be replaced.

In addition to minimising the output power of wireless access points to reduce the footprint of wireless networks, the use of radio frequency (RF) shielding can be used for an organisation's facilities. While expensive, this will limit wireless communications to areas under the control of an organisation. RF shielding on an organisation's facilities also has the added benefit of preventing the jamming of wireless networks from outside of the facilities in which wireless networks are operating.

Control: ISM-1338; Revision: 2; Updated: Mar-22; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Instead of deploying a small number of wireless access points that broadcast on high power, a greater number of wireless access points that use less broadcast power are deployed to achieve the desired footprint for wireless networks.

Control: ISM-1013; Revision: 6; Updated: Dec-21; Applicability: S, TS; Essential Eight: N/A

The effective range of wireless communications outside an organisation's area of control is limited by implementing RF shielding on facilities in which SECRET or TOP SECRET wireless networks are used.

Further information

Further information on <u>Wi-Fi technologies and associated testing and certification programs</u> is available from the Wi-Fi Alliance.

Further information on cyber supply chain risk management can be found in the cyber supply chain risk management section of the *Guidelines for procurement and outsourcing*.

Further information on evaluated products can be found in the evaluated product procurement section of the *Guidelines for evaluated products*.

Further information on encrypting communications can be found in the cryptographic fundamentals section of the *Guidelines for cryptography*.

Service continuity for online services

Cloud-based hosting of online services

Using cloud service providers can allow an organisation to build highly resilient online services due to the increased computing resources, bandwidth and multiple separate physical sites made available by cloud service providers. An organisation can attempt to achieve the same results using their own infrastructure, however, doing so may require significant upfront costs and may still result in a limited capability to scale dynamically to meet a genuine spike in demand. In cases of denial-of-service attacks, cloud-based hosting can also provide segregation from self-hosted or other cloud-hosted services ensuring that other systems, such as email, are not affected.

Control: ISM-1437; Revision: 5; Updated: Mar-22; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Cloud service providers are used for hosting online services.

Capacity and availability planning and monitoring for online services

It is important that connectivity between an organisation and their cloud service providers meets requirements for bandwidth, latency and availability. In support of this, an organisation and their cloud service providers should discuss the ability for resources to dynamically scale in response to a genuine spike in demand, including any authorised activities that can be undertaken to verify measures implemented to support such requirements, especially where a requirement for high availability exists. For example, an organisation and their cloud service providers may discuss whether dedicated communication links or connections over the internet will be used and whether any secondary communications links will provide sufficient capacity to maintain operational requirements should the primary communication link become unavailable.

Furthermore, capacity and availability monitoring should be performed in order to manage workloads and monitor the health of online services. This can be achieved through continuous real-time monitoring of metrics, such as latency, jitter, packet loss, throughput and availability. In addition, feedback should be provided to cloud service providers when performance does not meet service level agreement targets. To assist with this, anomaly detection can be performed through network telemetry that is integrated into security monitoring tools.

Control: ISM-1579; Revision: 2; Updated: Jun-23; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Cloud service providers' ability to dynamically scale resources in response to a genuine spike in demand is discussed and verified as part of capacity and availability planning for online services.

Control: ISM-1580; Revision: 1; Updated: Dec-21; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Where a high availability requirement exists for online services, the services are architected to automatically transition between availability zones.

Control: ISM-1581; Revision: 3; Updated: Jun-23; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Continuous real-time monitoring of the capacity and availability of online services is performed.

Using content delivery networks

Similar to cloud-based hosting, the use of content delivery networks (CDNs) can allow an organisation to create highly resilient online services by leveraging the large bandwidth, geographically dispersed hosting locations, traffic scrubbing and other controls offered by CDNs.

The use of CDNs is particularly effective when serving static bandwidth intensive media, such as images, sound or video files. However, the services offered by CDNs can include more than basic content hosting, such as web response caching, load balancing, web application security and denial-of-service attack mitigations.

In using CDNs, care should be taken with their configuration to ensure that the IP addresses of an organisation's web servers (referred to as origin servers) are not identifiable by malicious actors, as knowledge of origin server IP addresses could allow for protections provided by CDNs to be bypassed. Additionally, appropriate controls should be applied to only allow communication between origin servers, CDNs and authorised management networks.

Control: ISM-1438; Revision: 2; Updated: Dec-21; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Where a high availability requirement exists for website hosting, CDNs that cache websites are used.

Control: ISM-1439; Revision: 3; Updated: Mar-22; Applicability: NC, OS, P, S, TS; Essential Eight: N/A If using CDNs, disclosing the IP addresses of web servers under an organisation's control (referred to as origin servers) is avoided and access to the origin servers is restricted to the CDNs and authorised management networks.

Denial-of-service attack mitigation strategies

Denial-of-service attacks are designed to disrupt or degrade online services, such as website, email and Domain Name System services. To achieve this goal, malicious actors may use a number of methods to deny access to legitimate users of online services. This includes using multiple computers to direct a large volume of unwanted network traffic at online services in an attempt to consume all available network bandwidth, using multiple computers to direct tailored network traffic at online services in an attempt to consume all processing resources, or hijacking online services in an attempt to redirect legitimate users away from those services to other services that malicious actors control.

As an organisation often cannot avoid being targeted by denial-of-service attacks, they should discuss with their cloud service providers any denial-of-service attack detection and monitoring services that may be available for their use. For example, reporting dashboards that provide out-of-band and real-time alerts based on organisation-defined notification thresholds. Furthermore, an organisation should discuss with their cloud service providers what mitigation strategies they can implement to prepare for, and reduce the impact of, being targeted by a denial-of-service attack. Finally, with the express consent of their cloud service providers, an organisation may seek to test the effectiveness of any denial-of-service attack mitigation strategies that have been implemented.

Overall, preparing for denial-of-service attacks before they occur, such as by identifying critical online services and implementing preventative denial-of-service attack mitigation strategies, is by far the best approach as it is very difficult to respond to denial-of-service attacks once they begin and efforts at that stage are unlikely to be effective.

Control: ISM-1431; Revision: 5; Updated: Jun-23; Applicability: NC, OS, P, S, TS; Essential Eight: N/A

Denial-of-service attack mitigation strategies are discussed with cloud service providers, specifically:

- their capacity to withstand denial-of-service attacks
- costs likely to be incurred as a result of denial-of-service attacks
- availability monitoring and thresholds for notification of denial-of-service attacks
- thresholds for turning off any online services or functionality during denial-of-service attacks
- pre-approved actions that can be undertaken during denial-of-service attacks
- any arrangements with upstream service providers to block malicious network traffic as far upstream as possible.

Control: ISM-1436; Revision: 3; Updated: Jun-23; Applicability: NC, OS, P, S, TS; Essential Eight: N/A

Critical online services are segregated from other online services that are more likely to be targeted as part of denialof-service attacks.

Control: ISM-1432; Revision: 3; Updated: Jun-23; Applicability: NC, OS, P, S, TS; Essential Eight: N/A Domain names for online services are protected via registrar locking and confirming that domain registration details are correct.

Further information

Further information on cyber supply chain risk management can be found in the cyber supply chain risk management section of the *Guidelines for procurement and outsourcing*.

Further information on the use of cloud service providers can be found in the managed services and cloud services section of the <u>Guidelines for procurement and outsourcing</u>.

Further information on business continuity and disaster recovery planning can be found in the chief information security officer section of the <u>Guidelines for cybersecurity roles</u>.

Further information on mitigating denial-of-service attacks can be found in ASD's <u>Preparing for and responding to</u> <u>denial-of-service attacks</u> publication.

Disclaimer

The material in this guide is of a general nature and should not be regarded as legal advice or relied on for assistance in any particular circumstance or emergency situation. In any important matter, you should seek appropriate independent professional advice in relation to your own circumstances.

The Commonwealth accepts no responsibility or liability for any damage, loss or expense incurred as a result of the reliance on information contained in this guide.

Copyright

© Commonwealth of Australia 2025.

With the exception of the Coat of Arms, the Australian Signals Directorate logo and where otherwise stated, all material presented in this publication is provided under a Creative Commons Attribution 4.0 International licence (www.creativecommons.org/licenses).

For the avoidance of doubt, this means this licence only applies to material as set out in this document.

The details of the relevant licence conditions are available on the Creative Commons website as is the full legal code for the CC BY 4.0 licence (www.creativecommons.org/licenses).

Use of the Coat of Arms

The terms under which the Coat of Arms can be used are detailed on the Department of the Prime Minister and Cabinet website (www.pmc.gov.au/resources/commonwealth-coat-arms-information-and-guidelines).

For more information, or to report a cybersecurity incident, contact us:

cyber.gov.au | 1300 CYBER1 (1300 292 371)

Australian Government

Australian Signals Directorate